

WELCOME

<u>Chapter 16 Section 3:</u> Inverse Functions Graphically & Algebraically

WARM-UP

• Graph: f(x) = |x| - 2

$$f(x) = x + 2$$
 if $x \le -2$
-2x - 3 if $x > -2$

$$f(-3) = f(5) =$$

Chap 16 Sect 3: Learning Targets

- Write piecewise functions
- Understand what an <u>inverse</u> is, <u>inverse of a function</u> and <u>what it represents</u>.
- Find the inverse of a function Algebraically.
- Find the inverse using a graph.

Writing Piecewise Functions

We can write a piecewise function by breaking the graph into intervals of constant change and finding their equation.

<u>Inverse</u>

"Undoing," or working backwards to return to the original state or position is referred to as the inverse.

Put in Box -> Close Box -> Wrap Box -> Give Box

Take out of Box <- Open Box <- Un-Wrap <- Take Box

What is a Function? f(x)

A function is an operation on the x inputs in the domain that creates the possible f(x) outputs in the range.

$$f(x) = -2x + 4$$

$$f(3) =$$

$$f(1) =$$

Inputs/ Domain

Outputs/ Range

Inverse Function $f^{-1}(x)$

Undoes original function, It takes the output of a function and does operations to arrive back at the original input.

$$f(x) = -2x + 4$$

$$f^{-1}(x) = \frac{x-4}{-2}$$

Inputs/ Domain

Outputs/ Range

Find the Inverse Algebraically

Step 1:

$$f(x) = -2x + 4$$

Replace f(x) with y.

Step 2:

Switch the x and y variable

Step 3:

Solve for y.

Step 4:

If y function, replace $w/f^{-1}(x)$

Find the Inverse Graphically

The graph of any function's inverse is the <u>reflection</u> of the original function over the line y = x

$$f^{-1}(x) = \frac{x-4}{-2}$$